bamova

Zach Gompert and Alex Buerkle
University of Wyoming

February 2011 — software v. 1.0, documentation v. 1.0

1 Overview

This manual provides documentation for the bamova software. The models that are imple-
mented in this software are described and analyzed in GOMPERT and BUERKLE (2011) and
we expect that this paper will be studied thoroughly prior to using the bamova software.
This document simply provides information on how to compile and run the software and we
assume familiarity with the models, which is essential to make proper use of the software.
Depending on the scale of the analysis, this software will be used to estimate thousands of
parameters based on large sets of data. This is a reasonably large computational problem
that requires some computational skills on the part of the user, including use of UNIX and
the ability to write code to produce input files and to analyze and summarize output.

2 Obtaining the software

The bamova software can be downloaded from http://www.uwyo.edu/buerkle/software.
The software is distributed as a compiled binary for Intel-based computers running Mac OS
X, and as C++ source code that can be compiled by the user on any linux or UNIX platform.
The software consists of a program that is run from the UNIX command-line and does not
have a graphical interface.

The software depends on free and open-source software called the GNU Scientific Li-
brary (GSL), so the GSL needs to be installed on the user’s system (http://www.gnu.org/
software/gsl/). This means that the compiled binary of bamova requires that the GSL
is installed in /usr/local, which is the default location. Compiled binaries for the GSL
are available as part of many standard linux distributions. Alternatively, the GSL can be
compiled by the user. Users who are compiling bamova from the source code should install
GSL in the standard location (/usr/local) or modify their compilation command to point
to the proper location of the library (see below).

We assume that users are familiar with moving the compiled binary into a directory in
their UNIX $PATH, setting permissions for execution, etc., or can obtain assistance from
other local users, books or the web.

2.1 Compiling the software

Assuming that the GSL has been installed, here are examples of how to compile the bamova
software using the gcc compiler suite.

e FFor Mac OS X:

g++ -Wall -02 -o bamova bamova.C func.C -lgsl -1m -framework Accelerate

e For linux or other UNIX systems:
g++ -Wall -02 -o bamova bamova.C func.C -1gsl -1m -lgslcblas

e For linux/UNIX systems with non-default install location for GSL and ATLAS CBLAS
g++ -Wall -02 -L/usr/local/gsl-1.14/1ib -L/usr/local/atlas-3.9.28/1ib/ \
-I/usr/local/gsl-1.14/include -I/usr/local/atlas-3.9.28/include/ \

-0 bamova bamova.C func.C -1lgsl -1m -lcblas -latlas

3 Input file formats

3.1 Haplotype counts

All analyses require an input text file that gives the observed counts of each of the haplotypes
for each population and locus. The format of this file is identical for the known haplotypes
model and NGS-population model. Data for each genetic region begins with a line that gives
the genetic region’s number “MarkerQ” for the first genetic region, “Marker1” for the second
and so for each genetic region. The numbers should be consecutive and begin with 0. The
genetic region identification line should be followed by one line of data for each populations.
These lines should begin with “Population”, then give the population number (start with 0
and number populations consecutively, and then the counts of each haplotype, which should
come in the same order for each population. A short example with two genetic regions each
with five haplotypes sequenced in four populations is given in Table 1.

The haplotype count file for the NGS-individual model is a bit different from the other
models (Table 2). Genetic regions are denoted as described above, but are followed by
population identifiers and then a single line per individual giving the number of reads of
each haplotype observed for that individual, as shown below for three populations and one
genetic region.

3.2 Number of pooled individuals

The NGS-population model requires a second input text file that provides the number of
diploid gene copies that were sampled for each population and genetic regions. This file
should be in the form of a white-space separated matrix with rows corresponding to genetic
regions and columns corresponding to populations.

Table 1: Sample input data file format for the counts of haplotypes in each population and

for each genetic region.

MarkerO

Population
Population
Population
Population
Markeril

Population
Population
Population
Population

w NN = O

w N = O

o o0 O O

O ~N N

30
10

10

12

17

o o0 O O

W N~

O O o »

I e

O O 01O,

= w o,

Table 2: Sample input data file format for the NGS-individual model and the number of
reads for each genomic region, per individual and for each population.

MarkerO
Population

10 0 O
10 0 O

10 0 O
0 O

5

Population

10 0 O
10 0 O

5
5

Population

0
0
0
0

0 5
0 5

0
4
0
0

10
10
10
10

o O O

Table 3: Sample input data file format for the distances between haplotypes for each genetic
region (two loci in this case).

MarkerO

o 1 3 2 3 3
1 0 2 1 2 2
3 2 0 1 2 2
2 1 1 0 1 1
3 2 2 1 0 2
3 2 2 1 2 0
Markerl

o 1 2 3 4

1 0 1 2 3

2 1 0 3 4

3 2 3 0 1

4 3 4 1 0

3.3 Distances between haplotypes

An input text file giving distances between pairs of haplotypes will often be used in the
analysis (-d argument). If this file is not provided by the user, all distances will be set to
1. Genetic regions are specified in the distance file just as they are in the haplotype count
file. The identifier for each genetic region is followed on the next lines by a pairwise distance
matrix with haplotypes in the same order as the haplotype count file. The diagonal of this
matrix should be 0 and the matrix should be symmetrical. An example for two genetic
regions is given in Table 3.

3.4 Groups of populations

Estimating ¢sc and ¢or requires specifying groups of populations, which can be done by
including a population group file (-g argument). This file should have one row per group
that gives the group number and the numbers of the populations in each group. For example
to specify two groups, one with populations 0 and 3 and the other with populations 1, 2,
and 4 you would use the following simple file format:

Group0 0 3
Groupl 1 2 4

4 Command line arguments

Filenames and MCMC parameters can be specified and adjusted using command line argu-
ments. These command line arguments are defined in Table 4. Many of these arguments
have default values, which are used when alternative values are not supplied. Default values
are shown in parentheses.

-n

-w

Table 4: Command line arguments that are used by bamova.

Filename for haplotype frequency input file (“undefined”)

Filename for genetic distance input file (“undefined”)

Filename for population groups input file (“undefined”)

Filename for MCMC samples of haplotype frequencies (“hapfreq_output.txt”)

Filename for MCMC samples of genome-level parameters (“ab_output.txt”)

Filename for MCMC samples of ¢ statistics (“phi_output.txt”)

Filename for MCMC samples of ¢ statistic quantiles (“quantile_output.txt”)

Likelihood model: known haplotypes model = 0, NGS-population model = 1, NGS-
individual model = 2 (0)

File containing the number of gene copies (2N for diploid organisms) sampled for each
locus and population. Only used with the NGS-population model (“samn.txt”)

Number of MCMC iterations for which the model will run (NA)

Adjustment for the variance of proposal distribution for « and (. This value multiplied
by the mean expected value of a and 3 is used for the standard deviation of the proposal
distribution (0.2)

MCMC algorithm for genome-level parameters a and 3: 0 = random walk, 1 = indepen-
dence chain. Both algorithms use a bi-variate normal distribution to propose new values
of a and 3 (0)

MCMC algorithm for proposing haplotype frequency vectors: 0 = independence chain, 1
= random walk. Both algorithms use a Dirichlet distribution to propose new values for
haplotype frequencies (0)

Parameter to adjust the variance of the proposed values for the haplotype frequency vec-
tors. Increasing this parameter will decrease the variance of the proposal distribution
(1)

Parameter to adjust the variance of the initial values for the haplotype frequency vectors,
relative to the observed haplotype frequencies. Increasing this parameter will decrease the
variance of the values used for initialization (1)

Minimum of the uniform hyper-prior for the genome-level parameters o and 3 (0.5)
Maximum of the uniform hyper-prior for the genome-level parameters a and 3 (10°)
Correlation of proposal values of o and 3 from a bi-variate Normal distribution (0.8)
Parameter to adjust the proposal distribution for haplotype frequencies. This value is
added to the current haplotype frequencies (random-walk) or observed frequencies (inde-
pendence chain) after they are multiplied by the variance parameter given by -w to specify
the parameters of the Dirichlet proposal distribution (0.00001)

The same as -i, but used for initialization (1)

Thinning parameter. Specifies how often MCMC samples are printed to files (10)
Specifies which set of MCMC output files to print: 0, genome-level parameters output only;
1, genome-level parameters and ¢ statistics; 2, same as 1 plus quantile MCMC results; 3,
same as 2 plus haplotype frequencies. Warning, the haplotype frequency MCMC results
can be very large and can fill a small disk drive (1)

5 Software output

Several output files are produced by the program (the specific files generated depend on the
-o argument). All of these files simply contain the MCMC samples. These can be used to es-
timate various aspects of the posterior probability distribution for each parameter of interest
(using for example R, R DEVELOPMENT CORE TEAM 2010). Be aware that many of these
files will be quite large, and parsing these files using Perl or a similar computer language
often will often be necessary prior to summarizing the results in a statistical package.

Each row in the MCMC haplotype frequency output file (default “hapfreq-output.txt”;
which is often very large) begins with the genetic region number, followed by the population
number, the MCMC iteration, the number of unique haplotypes for the genetic region, and
then the haplotype frequencies for each haplotype for that MCMC iteration. Rows are
padded with trailing NA entries to ensure that all rows are the same length.

The genome-level parameters outfile (default “ab_output.txt”) has the following format:
each row begins with the MCMC iteration, followed by the values for asr, S5, mean genome-
level ¢gr, the standard deviation of the genome-level ¢gr distribution, and the probability
of the parameter values given the data and priors for that MCMC iteration. If the group
option is used this file will instead have the MCMC iteration, followed by the values for agr,
BsT, acr, Ber, asc, PBsc, mean genome-level ¢g7, the standard deviation of the genome-
level ¢gp distribution, mean genome-level ¢o7, the standard deviation of the genome-level
oot distribution, mean genome-level ¢g¢, the standard deviation of the genome-level ¢gr
distribution, and the probability of the parameter values given the data and priors for that
MCMC iteration.

The ¢ statistic outfile (default “phi_output.txt”) begins with the MCMC iteration, fol-
lowed by the genetic region and ¢gr at that MCMC step for that genetic region. If the group
structure option is used ¢gr is followed by ¢or and ¢gc.

The final potential outfile gives the quantiles associated with each locus-specific ¢ statistic
in the genome-level distribution. Each row in this file begins with the MCMC iteration, then
gives the genetic region number followed by either the quantiles for the locus-specific ¢g (the
population structure only model) or locus-specific ¢s7, dor and ¢gc (the group structure
model).

6 Example

We provide a brief example to illustrate the use of bamova. This example includes two
input files: hapcountexample.txt (a file of haplotype counts) and distfileexample.txt (a file
of distances among haplotypes). These files are included with the software distribution and
include five populations each made up of 20 diploid individuals with data from 50 genetic
regions. The number of haplotypes per genetic region varies. These data files were generated
using coalescent simulation (with the ms software, HUDSON 2002) using a splitting time
parameter of 0.7 and population mutation rate 6 = 0.2.

© _{o
P M
o
S
~ S
o | T |°
'_
£ o | °
© © S
3 8 {7
L S s
z . =
GC) o 8 |
O ™ |
@
o
N S _
o (@] < (@]
T T T T T T ! T T T T T T
0 5000 15000 25000 0 5000 15000 25000
MCMC step MCMC step

Figure 1: Scatterplots showing mean genome-level ¢ and the log probability of the model
parameters given the data as a function of MCMC iteration.

We used the following command to analyze this data set (see the description of command
line arguments and their defaults in Table 4 for more information). The mixing parameters
we use here were selected after a number of short runs with different tuning parameters.

bamova -f ./hapcountexample.txt -d ./distfileexample.txt -1 0 -x 250000 \
-v0.256-a0-DO-wl-W1-i0.0-I0.0-T10

Important note: Efficient mixing can be very difficult to achieve, particularly for large data
set with many haplotypes per locus. You cannot assume that the default mixing parameters
will work well for your data set. Adjust these parameters, observe how the chains behave by
analyzing the output, and verify good mixing before using the results from these analyses in
any way. There is no way around this and this is an inherent feature of MCMC estimation
procedures.

Figure 1 contains plots of mean genome-level ¢gr as a function of MCMC step and the
probability of the model parameters given the data, both of which suggest good mixing and
the need for only a short burnin (these plots were generated in R). We discard the first 5000
samples as a burn-in, and use the remainder to calculate a point estimate (the median of
the posterior distribution) and 95% credible intervals (CI) for the mean genome-level ¢gr,
which gives the following results: 0.435 (0.339-0.517). This was done using the quantile
function in R.

Next we calculate posterior probability distributions for each of the locus-specific ¢g7.

7

15 20

Probability
10
!

-1.0 -0.5 0.0 0.5 1.0

Figure 2: Posterior probability distribution for each locus-specific ¢gr.

We do this by reading the MCMC samples into R, and using the density function. The R
code we used is below and the plot of the posterior probability distributions is in Figure 2.

phidata<-read.csv("phi_output.txt", header=F)
postscript(file="phidensity.eps", width=6, height=6)
nloci<-50
burnin<-5000
mcmcl<-25000
onephi<-phidata[phidatal,2]==0,3]
plot(density(onephi[-c(1:burnin)],adj=2,from=-1,to=1), xlim=c(-1,1), ylim=c(0,20),
xlab=expression(paste(phi[ST])), ylab="Probability", main="",6 cex.axis=1.2,
cex.lab=1.2, col="darkgray")
for(i in 2:nloci){
onephi<-phidatal[phidatal,2]==1i -1,3]
lines(density(onephi[-c(1:burnin)],adj=2,from=-1,to=1), col="darkgray")
}
dev.off ()

Point estimates and credible intervals for each parameter can be obtained using quantile
in R. For example, an estimate of ¢g7 for genetic region 18 (which is the 19 locus) with a
5000 sample burnin would be obtained using the following (this gives the median and 95%
CI),

locus<-18
onephi<-phidatal[phidatal,2]==1ocus, 3]
quantile(onephi[-c(1:burnin)],prob=c(0.025,0.5,0.975)

which gives the following result for our MCMC sample: 0.374 (0.249-0.498).

7 Questions and additional information

We will do our best to respond to requests for additional information and features in the
software. Should the need arise, we will post answers to Frequently Asked Questions on the
bamova website: http://www.uwyo.edu/buerkle/software/bamova

7.1 Terms of use

The bamova software is available for use under the GNU Public License (GPL). This means
it is free to use. You are encouraged to download the source code, review it, and improve it.
If you use parts of the code in software of your own, you are required to give your users the
same rights that were granted to you under the GPL.

Note that under the GPL, the software is distributed without warranty.

We request that you cite GOMPERT and BUERKLE (2011) if you use the software in
analyses that appear in print.

References

GOMPERT, Z. and C. A. BUERKLE, 2011 A hierarchical Bayesian model for next-generation
population genomics. Genetics p. doi: 10.1534/genetics.110.124693.

Hubson, R. R., 2002 Generating samples under a Wright-Fisher neutral model of genetic
variation. Bioinformatics 18: 337-338.

R DEVELOPMENT CORE TEAM, 2010 R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-
0.

